The Maya: What Was Their Most Remarkable Achievement?

Overview: The Maya flourished over a thousand years ago in the rainforests of Mesoamerica. Their intellectual and technical mastery in many areas has intrigued and amazed those who have studied them. This Mini-Q asks you to examine the Mayan civilization and decide which of its accomplishments was the most impressive.

The Documents:

Document A: The Mayan Trade Network (map)
Document B: Building Cities
Document C: The Mayan Number System
Document D: The Mayan Calendar
Hook Exercise: What Makes an Achievement “Remarkable”?

Directions: The word “remarkable” is fuzzy when it is used as a measuring stick. What do we mean when we say, “Willie made a remarkable catch in center field,” or “That concert was the most remarkable I’ve ever been to,” or “It is pretty remarkable that Copernicus figured out that the earth orbits around the sun”? Indeed, what exactly is it that makes each of these accomplishments remarkable?

Task One: Below is a list of eight human achievements. Next to each are four criteria for judging remarkable-ness. Your job is to select those one or two criteria that best explain why each achievement is remarkable.

Criteria:
- **scale** = size
- **genius** = brilliance; cutting-edge thinking
- **effort** = physical or mental
- **significance** = impact on a society or the world

<table>
<thead>
<tr>
<th>Achievement</th>
<th>Scale</th>
<th>Genius</th>
<th>Effort</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putting a man on the moon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Painting the Mona Lisa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventing the computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovering penicillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defeating Nazi Germany in World War II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing the plays of Shakespeare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting a world record in the marathon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building the Great Walls of China</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task Two: Of the eight achievements listed above, which is the most remarkable? Be able to defend your answer in terms of the four listed criteria.
Document A

Source: Map created from various sources.

Mayan Trade Network

- Sea trade routes
- Land trade routes
- Archaeological sites
- Products:
 - Animal skins
 - Cacao
 - Cotton
 - Feathers
 - Honey
 - Jade
 - Obsidian
 - Salt

The Maya had no horses, donkeys, or other beasts of burden. Everything was carried by hand or by boat.

Some imported goods:
- Gold: Costa Rica and Colombia
- Turquoise: Southwestern U.S.
- Shells: Ecuador
- Pearls: Costa Rica

Porters carried goods for 10 hours per day at a speed of 1 to 3 miles per hour. Loads varied between 80 and 150 pounds. Porters carrying heavy loads worked in rotating relay teams.

Document Analysis

1. Where did most of the salt come from? What reason explains that?

2. Figuring to the nearest 100 miles, how far would cotton goods have to travel to get from Tulum to Bonampak? How much of this journey would be by sea? By land?

3. If the people of Cerritos traded with the people of Mayapán, what goods might they exchange? How about the people of Copán and the people of El Mirador?

4. How would the trade shown on this map improve life for people across the Mayan region?

5. Using at least two measuring sticks – scale, genius, physical effort and significance – describe what is remarkable about the Mayan trade network.
Document B

Archaeologists have argued that civilization requires urban centers and that the measure of a civilization can be made by the architecture of its cities.... Based on its architectural remains, Maya civilization ranks as one of the great pre-industrial cultures of the world.

... By 1975, archaeologists had catalogued more than 2,500 Maya locations of varying size and date with some stone construction. Numerous cities with populations in the tens of thousands have left a monumental record in the preconquest* era.

... Masonry architecture required central organization, craft specialization, and political power to command a large workforce.... The Maya were able to organize the labor ... of masons, plasterers, and supervising architects to build and maintain their cities of immense stone pyramids, stone palaces, and temples, ball courts, and other ritual buildings. For the single home of a Copán** nobleman, it has been estimated that at least 80 to 130 workers would have been employed full time to finish it in two to three months. The densest urban core of a city such as Tikal*** covered six square kilometers (more than two square miles), so the number of workers involved in construction and reconstruction must have been immense.

*Before the Spanish arrived (around 1524 CE)
**Mayan city of about 25,000 in Honduras
***One of largest Mayan cities, with population of 70,000

Document Analysis
1. What is a pre-industrial culture?

2. What was the estimated population of ancient Copán? Of ancient Tikal?

3. What does the ability to build great buildings out of stone tell you about Mayan political power? Explain.

4. Judging from the drawing of El Mirador, which criterion – scale, genius, effort, or significance – makes Mayan architecture most remarkable? Explain.

5. Judging from the text, not the drawing, what was most remarkable about Mayan architecture?
Document C

Note: We write numbers using a system in which the value of each digit depends on its position within the number. The digit furthest to the right stands for ones, the next digit to the left stands for tens, and so on. This type of system cannot work without a symbol for zero to show when a position is empty. The Maya used a positional system based on the number 20, rather than the number 10, and they were one of the first cultures in the world to develop the idea of the zero.

THE MAYAN NUMBER SYSTEM

The Maya used only three signs: the dot, \(\text{•} \) (1), the bar, \(\underline{\text{———}} \) (5), and the shell, \(\overline{\text{□}} \) (0).

The first nineteen numerals were written as follows:

\[
\begin{align*}
\overline{\text{□}} & = 0 \\
\overline{\text{———}} & = 1 \\
\overline{\text{———}} & = 2 \\
\overline{\text{———}} & = 3 \\
\overline{\text{———}} & = 4 \\
\overline{\text{———}} & = 5 \\
\overline{\text{———}} & = 6 \\
\overline{\text{———}} & = 7 \\
\overline{\text{———}} & = 8 \\
\overline{\text{———}} & = 9 \\
\overline{\text{———}} & = 10 \\
\overline{\text{———}} & = 11 \\
\overline{\text{———}} & = 12 \\
\overline{\text{———}} & = 13 \\
\overline{\text{———}} & = 14 \\
\overline{\text{———}} & = 15 \\
\overline{\text{———}} & = 16 \\
\overline{\text{———}} & = 17 \\
\overline{\text{———}} & = 18 \\
\overline{\text{———}} & = 19
\end{align*}
\]

Just as with our decimal system (based on 10) we move one column to the left when we reach 10, so with the Mayan vigesimal system (based on 20) they moved one rung upwards when they reached 20.

\[
\overline{\text{———}} = 20
\]

The numbers 21 to 25 were written as follows:

\[
\begin{align*}
\text{•} & = 21 \\
\text{•} & = 22 \\
\text{•} & = 23 \\
\text{•} & = 24 \\
\overline{\text{———}} & = 25
\end{align*}
\]

Some examples:

\[
\begin{align*}
\text{\overline{\text{□}}} & \times 2 \times 20 = 40 \\
\text{\overline{\text{———}}} & \times 5 \times 20 = 100 \\
\overline{\text{□}} & = (5 \times 20) + 1 = 101
\end{align*}
\]

Document Analysis

1. On what number was the Mayan number system based?

2. What symbol did the Maya use for zero? What symbols did they use for one and for five?

3. How did the Maya write: a. zero b. 7 c. 26 d. 60 e. 401?

4. Why is it important to have a symbol for zero?

5. Using at least two measuring sticks – scale, genius, effort and significance – describe what was remarkable about the Mayan system of mathematics.
The Maya had two main calendars. One was the sacred or ritual calendar, called tzolkin. It was a cycle of 260 days, and it marked the ceremonial life of the people. They also had a civil calendar, based on the solar year. This calendar had eighteen months of twenty days each, adding up to 360 days in all. To this were added five unlucky days, called Uayeb, to make a total of 365 days as in our calendar. This solar calendar was called haab... The two calendar cycles were used together. They were like two cogged wheels, revolving alongside each other, with the cogs (days) meshing as the wheels turned.

... The Maya ... developed the calendar further than any other New World people, and their calendar was more accurate than any other of their time. They were masters of the science of time measurement Observatories were built, at Chichén Itzá and other cities, to use in studying the movements of the sun and the moon, planets such as Venus and Mars, and the stars. The Maya priest-astronomers collected information over many years in order to make their predictions and develop their systems. So great was their knowledge that they could predict eclipses of the moon....

Source:

Document Analysis

1. What were the names of the three Mayan calendars? (Hint: See note also.)

2. What probably explains why the Maya used 20-day segments in their ritual calendar and 20-day months in their solar calendar? (Hint: See Document C.)

3. Which calendar was used to keep track of religious days? Explain.

4. Which calendar would have been most useful in predicting the beginning of rainy seasons? Why?

5. Using at least one measuring stick – scale, genius, effort, or significance – describe what was remarkable about the Maya’s development of their calendar.