AP Calculus Review Worksheet

This packet is a review of the entering objectives for AP Calculus and is due on the first day back to school. It is to be done neatly and on a separate sheet of paper. Have a great summer!

I. Simplifying Rational Expressions

Simplify. (Show your work!)

1. \(\frac{x - 4}{x^2 - 3x - 4} \)

2. \(\frac{x^3 - 8}{x - 2} \)

3. \(\frac{5 - x}{x^2 - 25} \)

4. \(\frac{x^2 - 4x - 32}{x^2 - 16} \)

II. Trigonometric Identities

1. Pythagorean Identities

2. \(\cos2x= \)

3. \(\sin2x= \)

III. Operations with Rational Expressions

1. \(\frac{1}{x + h} - \frac{1}{x} \)

2. \(\frac{2}{x^2} \)
3. \[\frac{1}{3+x} - \frac{1}{3} \]

4. \[\frac{2x}{x^2 - 6x + 9} - \frac{1}{x+1} - \frac{8}{x^2 - 2x - 3} \]

IV. Solving equations

Solve for \(Z \)

1. \(4x + 10yz = 0 \)

2. \(y^2 + 3yz - 8z - 4x = 0 \)

V. Operations with functions

If \(f(x) = \{(3,5), (2,4), (1,7)\} \) \(g(x) = \sqrt{x - 3} \) \(h(x) = \{(3,2), (4,3), (1,6)\} \)
\(k(x) = x^2 + 5 \) determine the following:

1. \((f+g)(1) = \)
2. \((k-g)(5) = \)
3. \((f \circ h)(3) = \)
4. \((g \circ k)(7) = \)
5. \(f^{-1}(x) = \)
6. \(k^{-1}(x) = \)
7. \(\frac{1}{f(x)} \)
8. \((kg)(x) = \)

VI. Miscellaneous: Follow the directions for each problem.

1. Evaluate \(\frac{f(x + h) - f(x)}{h} \) and simplify if \(f(x) = x^2 - 2x \).

2. Expand \((x + y)^3 \)
3. Simplify: \[\frac{2}{3}x^2(x + x^2 - x^3) \]
4. Eliminate the parameter and write a rectangular equation for
 \[x = t^2 + 3 \]
 \[y = 2t \]

VII. Series

Expand and simplify.
1. \[\sum_{n=0}^{4} \frac{n^2}{2} \]
2. \[\sum_{n=1}^{3} \frac{1}{n^3} \]

VIII. Simplifying Expressions

Simplify.
1. \(\frac{\sqrt{x}}{x} \)
2. \(e^{\ln 3} \)
3. \(e^{(1+\ln x)} \)
4. \(\ln 1 \)
5. \(\ln e^7 \)
6. \(\log_3 \left(\frac{1}{3} \right) \)
7. \(\log_\frac{1}{2} 8 \)
8. \(\ln \frac{1}{2} \)
9. \(e^{3\ln x} \)
10. \(\frac{4xy^{-2}}{12x^\frac{1}{3}y^{-5}} \)
11. \(27^\frac{2}{3} \)
12. \((5a^3)(4a^2)^\frac{2}{3} \)
13. \((4a^3)^\frac{3}{2} \)
14. \(\frac{3(n+1)!}{5n!} \)

IX. Using the point-slope form \(y - y_1 = m(x - x_1) \), write an equation for the line
1. with a slope of -2, containing the point (3,4)
2. containing the points (1,-3) and (-5,2)
3. with slope 0, containing the point (4,2)
4. parallel to 2x-3y=7 and passes through (5,1)
5. perpendicular to the line in problem #1, containing the point (3,4)

X. Trigonometry
Without a calculator, determine the exact value of each expression.

1. sin 0
2. sin \frac{\pi}{2}
3. sin \frac{3\pi}{4}
4. cos \pi
5. cos \frac{7\pi}{6}
6. cos \frac{\pi}{3}
7. tan \frac{7\pi}{4}
8. tan \frac{\pi}{6}
9. tan \frac{2\pi}{3}
10. tan \frac{\pi}{2}
11. cos(Sin^{-1} \frac{1}{2})
12. Sin^{-1}(sin \frac{7\pi}{6})

XI. Domain and Range
For each function, determine its domain and range.

1. y = \sqrt{x - 4}
2. y = \sqrt{x^2 - 4}
3. y = \sqrt{4 - x^2}
4. y = \sqrt{x^2 + 4}

XII. Determine all points of intersection

1. \begin{align*} y &= x^2 + 3x - 4 \\
y &= 5x + 11 \end{align*}
2. \begin{align*} y &= \cos x \\
y &= \sin x \text{ in the 1st quadrant} \end{align*}
XIII. Solving equations

Solve for x, where x is a real number. Show your work.

1. $x^2 + 3x - 4 = 14$
2. $\frac{x^4 - 1}{x^3} = 0$
3. $(x - 5)^2 = 9$
4. $2x^2 + 5x = 8$
5. $(x + 3)(x - 3) > 0$
6. $x^2 - 2x - 15 \leq 0$
7. $12x^2 = 3x$
8. $\sin 2x = \sin x$, $0 \leq x \leq 2\pi$
9. $|x - 3| < 7$
10. $(x + 1)^2(x - 2) + (x + 1)(x - 2)^2 = 0$
11. $27^{2x} = 9^{x-3}$
12. $\log x + \log(x - 3) = 1$
13. $e^{3x} = 5$
14. $\ln y = 2x - 3$