Trade Terms Introduced in This Module

Architect: A qualified, licensed person who creates and designs drawings for a construction project.

Architect's scale: A specialized ruler used in making or measuring reduced scale drawings. The ruler is marked with a range of calibrated ratios for laying out distances, with scales indicating feet, inches, and fractions of inches. Used on drawings other than site plans.

Architectural plans: Drawings that show the design of the project. Also called architectural drawings.

Beam: A large, horizontal structural member made of concrete, steel, stone, wood, or other structural material to provide support above a large opening.

Blueprints: The traditional name used to describe construction drawings.

Civil plans: Drawings that show the location of the building on the site from an aerial view, including contours, trees, construction features, and dimensions.

Computer-aided drafting (CAD): The making of a set of construction drawings with the aid of a computer.

Contour lines: Solid or dashed lines showing the elevation of the earth on a civil drawing.

Detail drawings: Enlarged views of part of a drawing used to show an area more clearly.

Dimension line: A line on a drawing with a measurement indicating length.

Electrical plans: Engineered drawings that show all electrical supply and distribution.

Elevation (EL): Height above sea level, or other defined surface, usually expressed in feet or meters.

Elevation drawing: Side view of a building or object, showing height and width.

Engineer: A person who applies scientific principles in design and construction.

Engineer's scale: A straightedge measuring device divided uniformly into multiples of 10 divisions per inch so that drawings can be made with decimal values. Used mainly for land measurements on site plans.

Fire protection plan: A drawing that shows the details of the building's sprinkler system.

Floor plan: A drawing that provides an aerial view of the layout of each room.

Foundation plan: A drawing that shows the layout and elevation of the building foundation.

Hidden line: A dashed line showing an object obstructed from view by another object.

HVAC: Heating, ventilating, and air conditioning.

Leader: In drafting, the line on which an arrow-head is placed and used to identify a component.

Legend: A description of the symbols and abbreviations used in a set of drawings.

Mechanical plans: Engineered drawings that show the mechanical systems, such as motors and piping.

Metric scale: A straightedge measuring device divided into centimeters, with each centimeter divided into 10 millimeters. Usually used for architectural drawings and sometimes referred to as a metric architect's scale.

Not to scale (NTS): Describes drawings that show relative positions and sizes only, without scale.

Piping and instrumentation drawings (P&IDs): Schematic diagrams of a complete piping system.

Plumbing isometric drawing: A type of three-dimensional drawing that depicts a plumbing system.

Plumbing plans: Engineered drawings that show the layout for the plumbing system.

Roof plan: A drawing of the view of the roof from above the building.

Scale: The ratio between the size of a drawing of an object and the size of the actual object.

Schematic: A one-line drawing showing the flow path for electrical circuitry or the relationship of all parts of a system.

Section drawing: A cross-sectional view of a specific location, showing the inside of an object or building.

Specifications: Precise written presentation of the details of a plan.

Structural plans: A set of engineered drawings used to support the architectural design.

Symbol: A drawing that represents a material or component on a plan.

Title block: A part of a drawing sheet that includes some general information about the project.
28. A(n) _______ is a cross-sectional view that shows the inside of an object or building.

29. The triangular and flat scales are the two most common types of _______.

30. A(n) _______ shows the shape of the roof and the materials that will be used to finish it.

31. The _______ of a drawing tells the size of the object drawn compared with the actual size of the object represented.

32. _______ show the layout for the plumbing system that supplies hot and cold water, for the sewage disposal system, and for the location of plumbing fixtures.

33. Part of the construction drawing, the _______ gives information about the structure and is numbered for easy filing.

34. _______ are the traditional name for construction drawings.

35. The drawing that makes up a building’s piping, valves, and switches is a(n) _______.

36. A(n) _______ is used mainly for land measurements on site plans.

Trade Terms

<table>
<thead>
<tr>
<th>Architect</th>
<th>Engineer</th>
<th>Piping and instrumentation drawings (P&IDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect’s scale</td>
<td>Engineer’s scale</td>
<td>Plumbing isometric drawing</td>
</tr>
<tr>
<td>Architectural plans</td>
<td>Fire protection plan</td>
<td>Plumbing plans</td>
</tr>
<tr>
<td>Beam</td>
<td>Floor plan</td>
<td>Roof plan</td>
</tr>
<tr>
<td>Blueprints</td>
<td>Foundation plan</td>
<td>Scale</td>
</tr>
<tr>
<td>Civil plans</td>
<td>Hidden line</td>
<td>Schematic</td>
</tr>
<tr>
<td>Computer-aided drafting (CAD)</td>
<td>HVAC</td>
<td>Section drawing</td>
</tr>
<tr>
<td>Contour lines</td>
<td>Leader</td>
<td>Specifications</td>
</tr>
<tr>
<td>Detail drawings</td>
<td>Legend</td>
<td>Structural plans</td>
</tr>
<tr>
<td>Dimension line</td>
<td>Mechanical plans</td>
<td>Symbol</td>
</tr>
<tr>
<td>Electrical plans</td>
<td>Metric scale</td>
<td>Title block</td>
</tr>
<tr>
<td>Elevation (EL)</td>
<td>Not to scale (NTS)</td>
<td></td>
</tr>
<tr>
<td>Elevation drawing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Construction Drawings

Module Five